Inversion of a velocity model using artificial neural networks

نویسندگان

  • Aaron Moya
  • Kojiro Irikura
چکیده

We present a velocity model inversion approach using artificial neural networks (NN). We selected four aftershocks from the 2000 Tottori, Japan, earthquake located around station SMNH01 in order to determine a 1D nearby underground velocity model. An NN was trained independently for each earthquake-station profile. We generated many velocity models and computed their corresponding synthetic waveforms. The waveforms were presented to NN as input. Training consisted in associating each waveform to the corresponding velocity model. Once trained, the actual observed records of the four events were presented to the network to predict their velocity models. In that way, four 1D profiles were obtained individually for each of the events. Each model was tested by computing the synthetic waveforms for other events recorded at SMNH01 and at two other nearby stations: TTR007 and TTR009. & 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)

Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...

متن کامل

Application of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data

This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values.  Seismic surveying was performed next on these models. F...

متن کامل

Flood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique

Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...

متن کامل

Accuracy Assessment of Geo-Statistics and Artificial Neural Networks Methods to Estimate Threshold Wind Velocity: A Case of Jazinak Region, Sistan Plain

Extended abstract 1- Introduction Threshold wind velocity is a major influencing variable in transportation of soil particles and dust production. It is considered as an important component in many theoretical equations and numerical models due to its importance in wind erosion studies (Stout & Zobeck, 1996). The wind tunnel method (fixed and portable), empirical relationships and sediment tr...

متن کامل

Estimation of Products Final Price Using Bayesian Analysis Generalized Poisson Model and Artificial Neural Networks

Estimating the final price of products is of great importance. For manufacturing companies proposing a final price is only possible after the design process over. These companies propose an approximate initial price of the required products to the customers for which some of time and money is required. Here using the existing data of already designed transformers and utilizing the bayesian anal...

متن کامل

Flow Variables Prediction Using Experimental, Computational Fluid Dynamic and Artificial Neural Network Models in a Sharp Bend

Bend existence induces changes in the flow pattern, velocity profiles and water surface. In the present study, based on experimental data, first three-dimensional computational fluid dynamic (CFD) model is simulated by using Fluent two-phase (water + air) as the free surface and the volume of fluid method, to predict the two significant variables (velocity and channel bed pressure) in 90º sharp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Geosciences

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2010